

Беспрепятственный перенос методик между спектрофотометрами Agilent Cary UV-Vis версий 8453 и 8454

Техническая информация

Автор

Д-р Урсула Темс (Ursula Tems)

Agilent Technologies Малгрейв, Австралия

Введение

К новому оборудованию применяется следующее требование: валидированные методики должны давать приемлемые результаты, эквивалентные тем, которые были получены с использованием оборудования, на котором собирались исходные данные. В регулируемых стандартами организациях, таких как фармацевтические лаборатории, эти методики обычно соответствуют нормам и требованиям фармакопеи. Благодаря беспрепятственному переносу методик от спектрофотометра 8453 UV-Vis на новый спектрофотометр Agilent Cary 8454 UV-Vis исключается необходимость в длительной и дорогостоящей повторной валидации.

В данном документе показано, что используемая методика и результаты, полученные с помощью спектрофотометра Agilent 8454 UV-Vis, являются точными и воспроизводимыми, если сравнивать с данными, собранными на спектрофотометре 8453 UV-Vis. Также подтверждается, что в сочетании с ПО ChemStation для УФ- и видимого диапазонов спектрофотометрическая система Agilent Cary 8454 UV-Vis является безусловным лидером для рутинного количественного анализа и контроля качества в регулируемых лабораториях.

Экспериментальная часть

Оборудование

- Спектрофотометр Agilent 8453 UV-Vis
- Спектрофотометр Agilent Cary 8454 UV-Vis
- ПО ChemStation для УФ- и видимого диапазонов

Параметры прибора

- ПО ChemStation для УФ- и видимого диапазонов: Расширенный режим
- Диапазон длин волн: 190—1 100 нм
- Время интегрирования: 0,5 секунды
- Аналитическая длина волны: 297 нм
- Калибровочная кривая: C = k1 * A
- Метод расчета: метод наименьших квадратов

Реактивы

- Буферный раствор: ацетатный буфер 0,02 М
- Базовый раствор: 1 мг/мл салициловой кислоты в ацетатном буфере 0,02 М
- Холостой раствор: 0,00 мг/мл салициловой кислоты в ацетатном буфере 0,02 М
- Растворы стандарта: 0,00; 0,01; 0,02; 0,03; 0,04 и 0,05 мг/мл салициловой кислоты
- Раствор образца: приблизительно 0,02 мг/мл салициловой кислоты

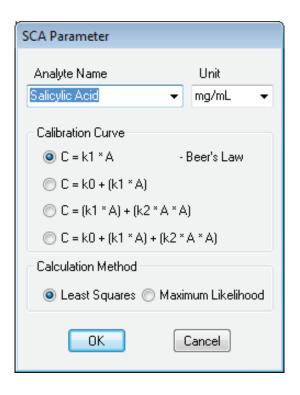


Рисунок 1. Диалоговое окно с настройками параметров прибора.

Методика

Оба спектрофотометра UV-Vis версий 8453 и 8454 включили и дали лампам прогреться в течение одного часа. Во время прогрева запустили ПО ChemStation для УФ- и видимого диапазонов и выбрали расширенный режим для проведения анализа. После разогрева сняли показания с холостого раствора. Затем собрали три спектра для каждого стандарта. Затем спектры раствора образца, полученные троекратным параллельным сканированием, измерили и по полученным данным рассчитали концентрацию.

Результаты

Спектры для стандарта салициловой кислоты, собранные на обоих спектрофотометрах UV-Vis версий 8453 и 8454, демонстрируют высокую воспроизводимость; стандартные кривые, полученные при 297 нм, показывают превосходный коэффициент корреляции (1,00) для каждого прибора (рис. 2а и 26).

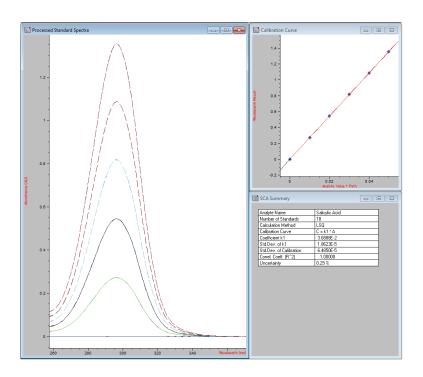


Рисунок 2a. ПО ChemStation для УФ- и видимого диапазонов: показаны троекратные спектры для стандарта салициловой кислоты и результирующая калибровочная кривая при 297 нм; спектры получены на спектрофотометре Agilent Cary 8454 UV-Vis.

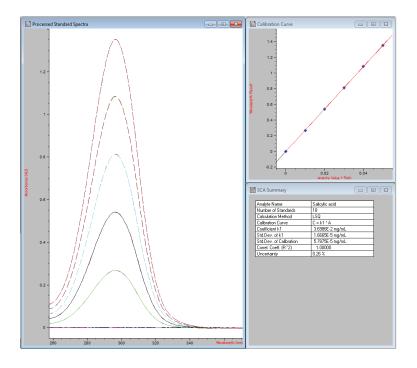


Рисунок 26. ПО ChemStation для УФ- и видимого диапазонов: показаны троекратные спектры для стандарта салициловой кислоты и результирующая калибровочная кривая при 297 нм; спектры получены на спектрофотометре 8453 UV-Vis.

Полученные в результате троекратного сканирования кривые образца показали очень хорошую воспроизводимость (рис. За и 36).

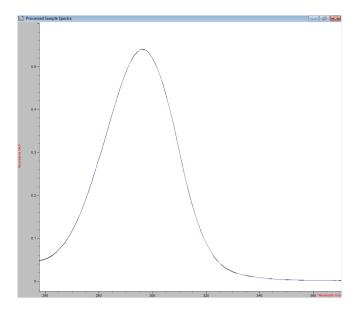
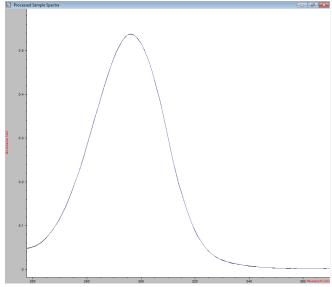
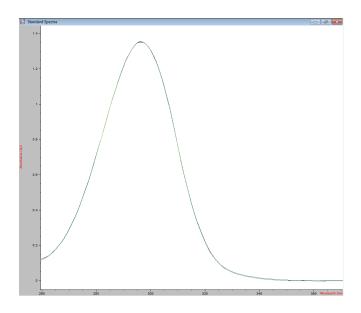




Рисунок За. ПО ChemStation для УФ- и видимого диапазонов: показаны троекратные спектры для образца; спектры получены на спектрофотометре Agilent Cary 8454 UV-Vis.

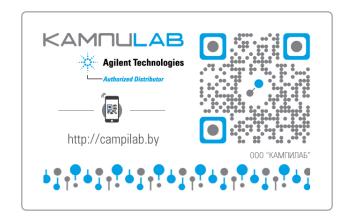
В дополнение к воспроизводимости полученных данных на каждом приборе, при наложении кривых, соответствующих каждому из приборов, спектры также показывают превосходную корреляцию, что видно из наложения кривых стандарта с наивысшей концентрацией салициловой кислоты (0,05 мг/мл) (рис. 4).

Рисунок 36. ПО ChemStation для УФ- и видимого диапазонов: показаны троекратные спектры для образца; спектры получены на спектрофотометре 8453 UV-Vis.

Рисунок 4. Наложение спектров для стандарта салициловой кислоты с концентрацией 0,05 мг/мл; кривые были получены в результате троекратного сканирования на спектрофотометрах UV-Vis версий 8454 и 8453.

Таблица 1. Среднее значение и стандартное отклонение (СО) значений троекратного сканирования для каждого стандарта и образца.

	Прибор 8454		Прибор 8453		
	Среднее значение	CO	Среднее значение	CO	Отличие от 8454
0,00 мг/мл салициловой кислоты (ед. погл.)	0,0000	0,0001	-0,0003	0,0001	-0,0003
0,01 мг/мл салициловой кислоты (ед. погл.)	0,2717	0,0002	0,2678	0,0002	-0,0039
0,02 мг/мл салициловой кислоты (ед. погл.)	0,5434	0,0002	0,5407	0,0003	-0,0027
0,03 мг/мл салициловой кислоты (ед. погл.)	0,8157	0,0003	0,8124	0,0002	-0,0033
0,04 мг/мл салициловой кислоты (ед. погл.)	1,0853	0,0001	1,0830	0,0003	-0,0023
0,05 мг/мл салициловой кислоты (ед. погл.)	1,3526	0,0004	1,3503	0,0005	-0,0022
Образец (ед. погл.)	0,5397	0,0003	0,5368	0,0002	-0,0029
Концентрация образца (мг/мл)	0,02	0,00	0,02	0,00	0,00


Подробные результаты (табл. 1) подтверждают воспроизводимость данных, собранных при 297 нм, с очень низким стандартным отклонением средних значений для стандарта и образца, полученных в результате троекратного сканирования. По результатам измерения концентраций, выполненных на обоих приборах, успешно вычислили концентрацию образца: 0,02 мг/мл. В таблице также продемонстрирована воспроизводимость между приборами версий 8453 и 8454: средние значения показаний различаются не более чем на 0,0039 единиц поглощения, что совершенно не влияет на конечный результат.

Заключение

Спектрофотометр Agilent Cary 8454 UV-Vis имеет такие же эксплуатационные характеристики, как и 8453 UV-Vis, и в основе его работы лежит проверенная технология диодно-матричного детектора. В данном документе продемонстрирована высокая воспроизводимость измерений стандартов и образца, которая достигается с помощью нового спектрофотометра Agilent Cary 8454 UV-Vis. Также в нем продемонстрирована точность проведенных измерений, о чем говорит коэффициент корреляции для кривой стандарта салициловой кислоты, равный 1,00.

Данные, собранные на Agilent Cary 8454 UV-Vis, показали превосходную воспроизводимость при сравнении с результатами, полученными с помощью спектрофотометра 8453 UV-Vis: различия данных в этом эксперименте составляют не более 0,0039 единицы поглощения, что аналогично воспроизводимости от прибора к прибору, которая наблюдается для приборов серии 8453 (данные не показаны).

Спектрофотометр Agilent Cary 8454 UV-Vis продемонстрировал такую эффективность, которая позволит сертифицированным лабораториям с уверенностью использовать этот прибор вместе с методиками, предварительно разработанными для спектрофотометра 8453 UV-Vis.

www.agilent.com

Компания Agilent не несет ответственности за возможные ошибки в настоящем документе, а также за убытки, связанные или являющиеся следствием получения настоящего документа, ознакомления с ним и его использования.

Информация, описания и технические характеристики в настоящем документе могут быть изменены без предупреждения.

© Agilent Technologies, Inc., 2014 Напечатано в марте 2014 г. Номер публикации: 5991-4274RU

